SUBMICRON SYSTEMS ARCHITECTURE PROJECT
Department of Computer Science
California Institute of Technology
Pasadena, CA 91125

Semiannual Technical Report

Caltech Computer Science Technical Report
Caltech-CS-TR-89-4
31 March 1989

The research described in this report was sponsored by the Defense Advanced Research
Projects Agency, DARPA Order number 6202, and monitored by the Office of Naval
Research under contract number N00014-87-K-0745.

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display acurrently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
31 MAR 1989 2. REPORT TYPE 01-11-1988 to 31-03-1989
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Submicron Systems Architecture £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Defense Advanced Resear ch Projects Agency,3701 North Fairfax REPORT NUMBER
DriveArlington,VA,22203-1714

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

seereport

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17.LIMITATION OF | 18 NUMBER | 19a NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 18
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

SUBMICRON SYSTEMS ARCHITECTURE
Semiannual Technical Report

Department of Computer Science

California Institute of Technology

Caltech-CS-TR-89-4
31 March 1989

Reporting Period: 1 November 1988 — 31 March 1989
Principal Investigator: Charles L. Seitz

Faculty Investigators: K. Mani Chandy
Alain J. Martin
Charles L. Seitz
Stephen Taylor

Sponsored by the
Defense Advanced Research Projects Agency
DARPA Order Number 6202

Monitored by the
Office of Naval Research
Contract Number N00014-87-K-0745

SUBMICRON SYSTEMS ARCHITECTURE

Department of Computer Science
California Institute of Technology

1. Overview and Summary

1.1 Scope of this Report

This document is a summary of research activities and results for the five-month
period, 1 November 1988 to 31 March 1989, under the Defense Advanced Research
Project Agency (DARPA) Submicron Systems Architecture Project. Previous
semiannual technical reports and other technical reports covering parts of the

project in detail are listed following these summaries, and can be ordered from
the Caltech Computer Science Library.

1.2 Objectives

The central theme of this research is the architecture and design of VLSI

systems appropriate to a microcircuit technology scaled to submicron feature sizes.
Our work is focused on VLSI architecture experiments that involve the design,

construction, programming, and use of experimental message-passing concurrent
computers, and includes related efforts in concurrent computation and VLSI design.

1.3 Highlights

¢ Mosaic prototype approaching completion (2.1).

Delivery of 2nd-generation multicomputers (2.2)

e Programming with composition (3.3)

First asynchronous microprocessor (4.1).

Fast self-timed mesh routing chips (4.2).

-1-

2. Architecture Experiments

2.1 Mosaic Project

Chuck Seitz, Nanette J. Boden, Jordan Holt, Jakov Seizovic, Don Speck, Wen-King
Su, Steve Taylor, Tony Wittry

The Mosaic C is an experimental fine-grain multicomputer, currently in develop-
ment. Each Mosaic node is a single VLSI chip containing a 16-bit processor, a
three-dimensional mesh router with each of its channels operating at 160Mb /s, a
packet interface, at least 8KB of RAM, and a ROM that holds self-test and boot-
strap code. These nodes are arrayed logically and physically in a three-dimensional
mesh. We are working toward building a 16K-node (32x32x16) Mosaic prototype,
together with the system software and programming tools required to develop ap-
plication programs.

The Mosaic can be programmed using the same reactive-process model that
is used for the medium-grain multicomputers that our group has developed.
However, the small memory in each node dictates that programs be formulated
with concurrent processes that are quite small. The Cantor programming system
supports this style of reactive-process programming by a combination of language,
compiler, and runtime support. The programmer is responsible only for expressing
the computing problem as a concurrent program. The resources of the target
concurrent machine are managed entirely by the programming system.

The Mosaic project includes many subtasks, which are listed below together
with their current status:

Design, layout, and verification of the single-chip Mosaic node. The
design and layout of the Mosaic C chip are now complete, and are going through
extensive switch-level simulation tests, including the simulation of multiple nodes
(see section 4.3). We expect to send a memoryless version of the node element to
fabrication in about two weeks as a final check of the processor, packet interface,
and router sections. These chips will be connected to external RAM and ROM
to provide functional node elements for software development and host interfaces.
Fabrication of the first chips in 1.2um CMOS technology with RAM and ROM is
anticipated in June 1989; quantity fabrication is anticipated in September 1989.

Internal self-test and bootstrap code. Since the Mosaic C is a
programmable computing element, devoting a portion of the bootstrap ROM to
self-testing greatly simplifies the logistics of producing these chips in significant
quantity. The bootstrap and self-test code has been designed and is currently being
written. The code will be tested using the ROM connected to the memoryless
Mosaic C elements. Additional tests to the channels, which must be accomplished
by the fabricator’s automatic test equipment, are also being written.

Packaging. A preliminary packaging design based on TAB-packaged Mosaic
-2

C chips was completed following a visit to Hewlett-Packard NID to understand
their TAB packaging capabilities. The manufacturing and replacement unit
contains eight nodes in a logical 2xX2x2 submesh on a circuit-card module whose
physical dimensions are approximately 2.5x5inches?. These modules have stacking
connectors that provide 160 pins on both the top and bottom, and are confined by
pressure between motherboards to provide a three-dimensional connection structure
that can be disassembled and reassembled for repair.

Cantor runtime system. A complete Cantor runtime system was written in
Mosaic assembly code, and is now running correctly with a suite of small test
programs under a Mosaic simulator on our medium-grain multicomputers (see
section 3.1). This system provides the low-level implementation of message and
process-creation primitives, and normally will be loaded as part of the Mosaic
system initialization. The evolution of the Cantor programming language and the

experience gained by use are two factors that are expected to affect continuing
refinements to this system.

Cantor language, compiler, and application studies. A definition of a
version of Cantor (3.0) with functions and limited message discretion was proposed
in January 1989 by William C. Athas of UT Austin. We have been studying the
changes in the runtime support that will be required by these improvements. In the
interim, the definition and compiler implementation of Cantor 2.2 remain in use for
application development.

Host interfaces and displays. The three-dimensional mesh structure of the
Mosaic allows a very large bandwidth around the mesh edges. In order to initiate
and interact with computations within the Mosaic, we must provide interfaces
between the Mosaic message network and conventional computers and networks.
One approach being studied is to use a memoryless Mosaic with a two-ported
external memory as a convenient interface to workstation computers. Another
external connection that is desired is a display interface. An elegant method that
uses one 32x32 plane of a Mosaic as a rendering engine, frame buffer, and output
video-conversion system has been developed. The detailed design of the video
output generator that attaches to one edge of this 32x32 plane is now under way.

2.2 Second-Generation Medium-Grain Multicomputers*

Chuck Seitz, Joe Bechenbach, Christopher Lee, Jakov Seizovic, Craig Steele, Wen-
King Su

A 16-node Intel iPSC/2 was delivered in November 1988, and a 16-node Symult
Series 2010, a second-generation medium-grain multicomputer developed as a

* This segment of our research is sponsored jointly by DARPA and by grants from
Intel Scientific Computers (Beaverton, Oregon) and Symult Systems (Monrovia,
California).

-3

joint project between our research project and Symult Systems, Inc. (formerly
Ametek Computer Research Division), was delivered in December 1988. Both of
these systems have been used extensively for programming system developments,
applications, and benchmarks. We have encountered very few system problems in

running existing Cosmic-C application programs on either the Symult Series 2010
or Intel iPSC/2.

Application programs typical of those that were written for first-generation
multicomputers run 8-10 times faster per node on the Symult Series 2010 and
on the Intel iPSC/2 than on first-generation machines, such as the Intel iPSC /1.
Applications involving latency-sensitive non-local message traffic exhibit more
dramatic improvements, particularly on the Series 2010, due to cut-through message
routing being included in the hardware of these second-generation multicomputers.

Delivery of a 64-node Series 2010 is expected on 31 March 1989, and our
16-node Series 2010 will be returned briefly to Symult to be upgraded to 32
nodes and retrofitted with some hardware improvements to the mesh termination
and host interfaces. The 32-node Series 2010 will continue as our principal
programming-system-development machine. The 64-node Series 2010 and the 16-
node iPSC/2 will be made available to outside users through the Caltech Concurrent
Supercomputing Facilities. Outside users will include researchers at Caltech, as well
as those associated with the Rice-Caltech-Argonne-Los Alamos (NSF Science and
Technology) Center for Research in Parallel Computation. These systems will also
be available for use by researchers in the DARPA community; DARPA researchers

should contact Chuck Seitz (chuck@vlsi.caltech.edu) to make arrangements for
access.

We expect to expand both the Intel iPSC/2 and Symult Series 2010 to larger
configurations by the early part of CY90.

Copies of the Cosmic Environment system have been distributed to 13 additional
sites during this period, bringing the total copies distributed directly from the
project to over 160.

An effort has been started to implement major extensions of the Cosmic
Environment host runtime system and the Reactive Kernel node operating system.
The new CE will be based internally on reactive programming, and will allow a
more distributed management of a set of network-connected multicomputers. The
extended RK will support global operations across sets of cohort processes, including
barrier synchronization, sum, min, max, parallel prefix, and rank. Another
extension will be the support of distributed data structures, such as sets and
ordered sets. These new features will be implemented at the RK handler level,
where the message latency is only a fraction of that at the protected user level. The
implementation of these algorithms at the handler level permits the performance of
global and distributed-data-structure operations in times that do not greatly exceed
those of user-level operations dealing with single messages.

-4-

Our Caltech project continues to work with both Intel and Symult on the
architectural design, message-routing methods and chips, and system software for
medium-grain multicomputers. We expect to see additional major advances in the
performance and programmability of these systems over the next two years. In
addition, we continue to develop applications in VLSI design and analysis tools, and
in other areas in which the programming of these multicomputer systems presents
particular difficulties or opportunities.

2.3 Cosmic Cube Project

Wen-King Su, Jakov Seizovic, Chuck Seitz

The Cosmic Cubes that were built in our project in 1983 and the Intel iPSC/1
d7 that was contributed to the project in 1985 continue to operate very reliably.
Overall usage has decreased somewhat with the appearance of the second-generation
multicomputers, but the iPSC/1 continues to be used fairly heavily within the
research group for discrete event simulations, and by Caltech students and faculty
in Aeronautics for supersonic-flow computations.

Neither the 64-node or 8-node Cosmic Cubes exhibited any hard failures in this
five-month period. The two original Cosmic Cubes have now logged 3.8 million
node-hours with only four hard failures, three of which were chip failures in nodes,
and one a power-supply failure. A node MTBF in excess of 1,000,000 hours is
probable based on this reliability experience.

3. Concurrent Computation

3.1 Cantor
Nanette J. Boden, Chuck Seitz

Programming Fine-Grain Multicomputers

The experiments we reported previously in application programming using Can-
tor 2.0 and 2.2 have suggested a series of changes to the Cantor language.
William C. Athas, who led the development of Cantor while he was a graduate
student and post-doc in the project, and who is now at UT Austin, has incorpo-
rated these ideas into the definition of a new version of Cantor (3.0). The principal
structural changes are the introduction of limited discretion in receiving messages
according to type, and in the approach to implementing functions.

In developing the Cantor programming system for the Mosaic, we mean to allow

for these changes so that we may change to Cantor 3.0 as soon as a new compiler
is produced.

Cantor for the Mosaic

Development of Cantor runtime support for the Mosaic multicomputer has
progressed significantly during the last five months. Initially, we defined a Cantor
Abstract Machine (CAM) that represents an idealized machine for executing Cantor
code. The CAM instruction set includes single instructions that encapsulate
complicated Cantor operations, such as process creation and message passing.
By design, the implementation of these operations can be varied within native
code generators for experimenting with different strategies. With the Mosaic, for
example, we use a macro-assembler that translates the implementation for each
CAM instruction into Mosaic instructions.

The definition of the first version of the Cantor runtime system for the Mosaic
consisted chiefly of freezing efficient implementations for process creation and
message passing, and expressing them with Mosaic instructions. In the case of
process creation, a software cache of available reference values is maintained on
each node so that processes can be created with low latency. These reference
values are later bound to actual processes by special creator processes located on
each node that allocate memory for new processes. Receiving a message on the
Mosaic is implemented by having the runtime system determine the destination
process, and then run that process to absorb the message. The runtime system also
communicates with the runtime systems on other nodes to manage resources within
the node, eg, sending requests for more reference values to fill the software cache.

To evaluate different runtime system prototypes, we developed a Mosaic
simulator that runs on existing medium-grain multicomputers, including the Cosmic

-6-

Cubes, Intel iPSCs, and the Symult 2010. A host program distributes the Mosaic
code for a Cantor program to each simulated Mosaic node, and initiates computation
by instantiating the main process of the Cantor program. Program output is
achieved by instantiating a console process and passing its reference in messages.

Currently, our simulator is working on a test suite of simple Cantor programs.
In the future, we plan to incorporate some of the more recent Cantor innovations,
eg, functions and limited message discretion, into the simulator and into the runtime
system. We are also planning experiments to evaluate different strategies for code
distribution and memory allocation throughout Mosaic nodes.

3.2 Concurrent]Logic Programming
Stephen Taylor

A commercially supported concurrent logic programming system was ported to our
Symult Series 2010 multicomputer, and is available for all users of our project’s
multicomputers.

This system is composed of a compiler for the language Strand, and an
environment for program development. The language provides an abstract message-
passing framework for use in a variety of symbolic and system integration tasks.
The system is also operational on Intel iPSC systems, networks of Suns, Mecho
Transputer surfaces, PC Plug-in Transputer cards, Encore /Sequent shared memory
machines, BBN Butterfly, and Atari personal machines. The system was used for a
graduate course in compiler techniques this quarter, and will be used in a graduate
course on concurrent programming in this coming quarter. It is also being used to
study various applications in the composition research described in the following
section of this report. Finally, a textbook describing the ideas embodied in the

Strand system was recently completed, and will be published by Prentice-Hall in
July 1989.

3.3 Programming with Composition

Mani Chandy, Stephen Taylor

We are interested in developing a notation for specifying concurrent algorithms and
programs. Our goals are to support formal reasoning about program correctness
and to provide efficient implementations of symbolic, numeric, and operating system
codes. We have chosen program composition as a central notion due to its prevalence
in both semantic models and program design methodologies.

During the past six months, we have considered the basic components of such a
notation. Our conclusion is that there are four composition operators of importance.
These operators are defined on program units; the method by which these units
are implemented is relatively unimportant. It is natural to expect the notation
to allow existing codes (written in Fortran, C, Lisp, Ada, etc) to be reused on

-

multicomputers. Moreover, the composition of these units will have a formal
semantic characterization. To explore the utility of the notation, we are currently
focussing on the hand compilation of non-trivial application codes. If performance
results indicate that the notation is sufficiently efficient, we plan to build a compiler
targeted to multicomputer architectures.

In the area of numeric computing we are studying a large fluid-flow problem
developed in the department of Applied Mathematics at Caltech. This Fortran
application computes the transition from a two-dimensional Taylor Vortex to three-
dimensional wavy-vortex flow. Central to the application is a relaxation algorithm
that employs a multigrid method. After benchmarking, we discovered that more
than 70% of the execution time for the application was spent in the relaxation
algorithm; thus, we decided to focus on this algorithm. Unfortunately, we arrived at
a somewhat negative conclusion: The original algorithm was based on a sequential
line-iteration scheme that afforded no opportunity for concurrent execution. As
a result, we have converted the original code to use a point Gaussian relaxation
algorithm; this appears more suitable. We are currently in the process of debugging
a concurrent formulation of the algorithm.

In the area of symbolic computing we are studying a large automated reasoning
program in conjunction with the Aerospace Corporation in Los Angeles. This
program has been used extensively for checking the correctness of hardware
specifications and Ada programs. A central component of the program is a
congruence closure algorithm used for maintaining equality assertions. We began
this research by investigating the opportunities for executing portions of this
algorithm concurrently. This, again, led us to a somewhat negative conclusion:
The granularity of typical invocations of the algorithm is too low to benefit from
concurrent execution. We are now investigating a new algorithm that overlaps the
execution of multiple equality assertions. Since a large number of these occur in a
typical proof, we believe this to be a more suitable direction.

Finally, we are also interested in working with DNA sequencing programs, but
have not yet made substantial progress in this area.

It should be understood that the objective of these application efforts is to

test the utility of the program-composition notation, rather than to develop the
applications themselves.

3.4 Variants of the Chandy-Misra-Bryant Distributed Discrete-Event
Simulation Algorithm

Wen-King Su, Chuck Seitz

During the past five months, additional simulations using the new logic simulator
have been made, and a revision of the paper “Variants of the Chandy-Misra-Bryant
Distributed Discrete-event Simulation Algorithm” (included as an appendix to this
report) was written for publication in the 1989 SCS Eastern Multi-Conference. A

-8

test version of the hybrid simulator has been implemented on top of the concurrent
CMB variant simulators. Results from this prelimiary investigation are promising,
and a new, more efficient version of the hybrid simulator is currently being written.

3.5 Distributed Snapshots
Mani Chandy

One of the fundamental problems in distributed systems appears trivial: Record the
state of the system. The problem is, however, quite difficult because distributed
systems do not have a single system-wide clock. If there were a clock, all processes
could record their local states at a predetermined time. The problem of recording
global states of distributed systems is at the core of a large number of problems
in distributed systems, including deadlock detection, termination detection, and
resource management. The paper, “The Essence of Distributed Snapshots,”
submitted to the ACM Transactions on Computer Systems, and included as an
appendix to this report, presents necessary and sufficient conditions for a collection
of local snapshots (recordings of local states) to be a global snapshot. The paper
shows that many distributed algorithms can be developed in a systematic and
straightforward manner from these conditions.

4. VLSI Design

4.1 The Design of the First Asynchronous Microprocessor

Alain J. Martin, Steven M. Burns, T. K. Lee, Drazen Borkovic, Pieter J. Hazewin-
dus

We have completed the design of an entirely asynchronous (self-timed, delay-
insensitive) microprocessor. It is a 16-bit, RISC-like architecture with independent
instruction and data memories. It has 16 registers, 4 buses, an ALU, and two adders.
The size is about 20,000 transistors. Two versions have been fabricated: one in 2pum
MOSIS SCMOS, and one in 1.6um MOSIS SCMOS. (On the 2um version, only 12
registers were implemented in order to fit the chip into the 84-pin 6600um X 4600um
pad frame.)

With the exception of isochronic forks (see the paper included as an appendix
to this report), the chips are entirely delay-insensitive, ie, their correct operation
is independent of any assumption on delays in operators and wires except that the
delays be finite. The circuits use neither clocks nor knowledge about delays.

The only exception to the design method is the interface with the memories. In
the absence of available memories with self-timed interfaces, we have simulated the
completion signal from the memories with an external delay. For testing purposes,
the delay on the instruction memory interface is variable.

In spite of the presence of several floating n-wells, the 2um version runs at
12 MIPS. The 1.6um version runs at 18 MIPS. (Those performance figures are
based on measurements from sequences of ALU instructions without carry. They
do not take advantage of the overlap between ALU and memory instructions.) Those
performance results are quite encouraging given that the design is very conservative:
It uses static gates, dual-rail encoding of data, completion trees, etc.

Only two of the 12 2um chips passed all tests, but 34 out of the 50 1.6um chips
were found to be entirely functional. However, within a certain range of values
for the instruction memory delay, the 1.6um version is not entirely functional. We
cannot yet explain this phenomenon.

We have tested the chips under a wide range of VDD voltage values. At room
temperature, the 2um version is functional in a voltage range from 7V down to
0.35V! And it reaches 15 MIPS at 7V. We have also tested the chips cooled in liquid
nitrogen. The 2um version reaches 20 MIPS at 5V and 30 MIPS at 12V. The 1.6um
version reaches 30 MIPS at 5V. Of course, these measurements are made without
adjusting any clocks (there are none), but simply by connecting the processor to a
memory containing a test program and observing the rate of instruction execution.
The results are summarized in Figure 1. The power consumption is 145mW at 5V,
and 6.7mW at 2V. Figure 2 shows that the optimal power-delay product is obtained
at 2V at room temperature.

-10-

10

FSO~—<~ o S=

Volts

Figure 1: MIPS as a function of VDD

Volts

Figure 2: Power-delay product as a function of VDD

-11-

-3

4.2 Fast Self-Timed Mesh Routing Chips

Chuck Seitz

The latest mesh-routing-chip (MRC) design, the FMRC2.1 design, was sent to
MOSIS for 1.6um SCMOS fabrication on 7 November 1988. This chip is a revision of
FMRC2.0 that corrects a timing error in the latching of a routing decision. A Spice
simulation indicated that that the revision corrected a timing error of approximately
0.7ns to a timing margin of about 1.0ns (about 50% of the difference between two
short delay paths; hence, not as risky as it may sound). The maximal throughput
predicted both by Spice and by tau-model calculations was 60MB/s.

These chips were returned from fabrication on 10 January 1989, and were
found to operate correctly under a nearly exhaustive functional screening, and at
a maximum throughput of 56MB/s. The yield on this run was 44/50. One of the
chips had a cracked package, and two had bonding shorts; hence, the fabrication
yield was actually 44/47.

Batches of 20 good chips were sent both to Intel Scientific Computers (as GFE
on their DARPA contract) and to Symult Systems, and both companies have verified
that these chips operate correctly in their test fixtures or systems.

The FMRC2.1 chip employs a design method that is not entirely delay-
insensitive (see previous section). The circuit exhibits races within modules,
but these modules have self-timed interfaces to other modules. Previous MRGCs,
entirely pin-for-pin compatible, employed the same delay-insensitive style as the
asynchronous processor reported in the previous section, and required nearly twice
the silicon area to operate half as fast as the FMRC2.1.

Hence, we conjecture that we shall see the same phenomenon with self-timed
designs that is apparent with conventional designs; namely, that chips with relatively
few cell types, such as memories and MRCs, will profitably employ circuit-level
optimizations. Such optimizations are relatively less profitable and manageable in
more complex chip designs, such as processors.

4.3 Mosaic C Chip

Jakov Seizovic, Jordan Holt, Chuck Seitz, Don Speck, Wen-King Su, Tony Wittry

During the past few months, work on the Mosaic chip has predominantly consisted of
a series of extensive switch-level simulations. Using COSMOS instead of MOSSIM,
we were able to decrease the simulation time by a factor of ten, with a negligible
additional cost in setup (compile) time. The simulation of a memoryless version
of Mosaic chip, consisting of about 26K transistors, takes slightly over a second of
real time per clock cycle when running on a SUN 3/260. This has enabled us to
simulate fairly long sequences of instructions from the Cantor runtime system at
the switch-simulation level.

-12.

Having completed simulations of all of the logic parts of the Mosaic chip,
ie, processor, packet interface, router, and bus arbiter, independently as well as
together, we are entering the final phase of switch-level simulations, where multiple
Mosaic chips will be represented as processes under CE/RK, and run on the
multicomputers operated by the project, as well as on workstations.

We are planning to send the first version of a Mosaic chip to fabrication on a
2 MOSIS run within a couple of weeks.
4.4 New CMOS PLAs

Jakov Seizovic, Chuck Seitz

A NOR-NOR precharged PLA has been designed to replace the NAND-NOR
precharged PLA that we have used extensively since 1985. Both the delay and
precharge time of this NOR-NOR PLA are linear in the number of inputs, a
significant improvement compared to the NAND-NOR PLA, in which the delay is
quadratic, and precharge time is cubic. This PLA has replaced the two NAND-NOR,
PLAs in the Mosaic C packet interface and the hybrid static /precharge NAND-NOR
PLA in the Mosaic processor, and accordingly has saved us a lot of time and trouble
in the Mosaic design.

4.5 CIF-flogger

Glenn Lewis, Chuck Seitz

CIF-flogger is a multicomputer program for flattening CIF files, rasterizing the
geometry, and performing parallel operations on the geometry in strips. It runs
under the CE/RK system, and hence, on most available multicomputers, including
the Intel iPSC/2 and Symult Series 2010.

CIF-flogger currently supports the following operations on the chip geometry:
e parsing the CIF specification file (produced by Magic)
o flattening and rasterizing the hierarchical design geometry
e recognizing transistor geometry
e global connected-component labeling
¢ bloat, shrink, and logical mask layer operations
e creating new CIF for a processed design
Plans for CIF-flogger include:
e general CIF-reading capability
e circuit extraction

-13-

e well-plug checking
e design-rule checking

Initial timings indicate that CIF-flogger provides these operations in a matter of a
few seconds for 100K-transistor chips. CIF-flogger is intended to be a useful tool
for chip designers and foundries to verify that a design passes “syntactical” checks
before it is fabricated, thus saving both time and money.

4.6 Adaptive Routing in Multicomputer Networks
John Y. Ngai, Chuck Seitz

As we are wrapping up our theoretical investigation of multicomputer adaptive
routing, our recent efforts have been concentrated in two areas:

(1) The first of a series of publications will appear in the 1989 ACM Symposium
on Parallel Algorithms and Architectures, to be held in Sante Fe, New Mexico
this June. (A copy of this paper is included at the end of the report.)

(2) We have been searching for practical implementation ideas for replacing the
existing oblivious router in the Mosaic with an adaptive router. A low-latency
header encoding and modification scheme that we have dubbed the “sign-
first one-shy code” has been devised for an adaptive router with a relatively
narrow flit width. The details of these implementation ideas can be found in a
forthcoming PhD thesis.

-14-

